The relationship between salts and growth of Streptomyces isolated from mural paintings in some ancient Egyptian tombs

Akmal Ali Sakr, Mohammed Farouk Ghaly, Mona Fouad Ali

Abstract


Summary


Eight out of the forty-six samples of Streptomyces representing the most potent deteriorating isolates were taken from scaled and stained mural paintings in the tombs at Tell Basta and Tanis, Lower Egypt. These isolates were identified using conventional and 16S rDNA sequencing methods and attributed to S. albidofuscus, S. ambofaciens, S. canaries, S. chibaensis, S. coelicolor, S. corchorusii, S. nigrifaciens
and S. parvullus. The different salts occurring on the ancient Egyptian tombs, such as sodium chloride, potassium chloride and magnsium sulphates enhanced the growth of Streptomyces isolates till 10% of these salts. Streptomyces isolates adapted/adopted different defense mechanisms such as pigmentation, osmotic balance and amino acid
production. The salts had a synergistic effect in the deterioration of the mural paintings through the cooperation of the mycelium of Streptomyces with salts in the mechanical deterioration of the stone surfaces.

 


Riassunto

Otto dei quarantasei campioni di streptomiceti che rappresentano i più potenti biodeteriogeni sono stati isolati dagli affreschi deteriorati all’interno delle tombe a Tell Basta e Tanis, nel basso Egitto. Questi isolati sono stati identificati usando metodi convenzionali e del sequenziamento 16S rDNA e sono stati attribuiti alle specie S. albidofuscus, S. ambofaciens, S. canaries, S. chibaensis, S. coelicolor, S. corchorusii, S. nigrifaciens and S. parvullus. I diversi sali ritrovati sulle antiche tombe egizie, come il cloruro di sodio, cloruro
di potassio e il solfato di magnesio hanno accelerato la crescita degli streptomiceti isolati fino ad una concentrazione del 10% di questi sali. Gli streptomiceti isolati hanno adottato diversi meccanismi di difesa come la pigmentazione, l’equilibrio osmotico e la produzione di aminoacidi. I sali hanno svolto un effetto sinergico sul deterioramento degli affreschi attraverso l’interazione con il micelio degli streptomiceti ed i sali, incrementando il deterioramento meccanico delle superfici lapidee.


Résumé

Huit des quarante-six échantillons de streptomycètes, qui représentent les biodétériogènes les plus puissants, ont été isolés des fresques détériorées situées à l’intérieur des tombes à Tell Basta et Tanis, en Basse-Égypte. Ces isolats ont été identifiés à l’aide de méthodes conventionnelles et du séquençage 16S ADNr, et ils ont été attribués
aux espèces S. albidofuscus, S. ambofaciens, S. canaries, S. chibaensis, S. coelicolor, S. corchorusii, S. nigrifaciens et S. parvullus. Les différents sels retrouvés sur les anciennes tombes égyptiennes, tels que le chlorure de sodium, le chlorure de potassium et le sulfate de magnésium, ont amplifié la croissance des streptomycètes
isolés jusqu’à 10 % de ces sels. Les streptomycètes isolés ont adopté différents mécanismes de défense tels que la pigmentation, l’équilibre osmotique et la production d’acides aminés. Les sels ont eu un effet synergique sur la détérioration des fresques, à cause de leur interaction avec le mycélium des streptomycètes : la détérioration
mécanique des surfaces en pierre a été ainsi augmentée.

 


Zusammenfassung


Acht der sechsundvierzig Proben von Streptomyzeten, die die schlimmste Verrottung hervorrufen, wurden in den verrotteten Fresken im Inneren der Grabstätten in Tell Basta und Tanis in Niederägypten isoliert. Sie wurden anhand herkömmlicher Methoden und durch Sequenzierung des 16S rDNA isoliert und den Spezies S. albidofuscus, S. ambofaciens, S. canaries, S. chibänsis, S. cölicolor, S. corchorusii, S. nigrifaciens und S. parvullus zugeordnet. Die verschiedenen Salze, die in den antiken ägyptischen Gräbern vorgefunden wurden, wie beispielsweise Natriumchlorid, Kaliumchlorid und Magnesiumsulfat, haben das Wachstum der isolierten Streptomyzeten bis auf 10% dieser Salze gesteigert. Die isolierten Streptomyzeten bedienten sich verschiedener Verteidigungssysteme, wie beispielsweise Pigmentierung, Osmose-Gleichgewicht und Erzeugung von Aminosäuren. Die Salze waren durch usammenwirkung mit dem Myzelium der Streptomyzeten synergisch an der Verrottung der Fresken beteiligt und haben die mechanische Schädigung der Steinflächen verstärkt.


Resumen


Ocho de las cuarenta y seis muestras de estreptomicetos, que constituyen uno de los biodeteriógenos más potentes, han sido aislados en los frescos deteriorados dentro de las tumbas de Tell Basta y Tanis, en el bajo Egipto. Estos agentes aislados han sido identificados utilizando métodos convencionales y mediante el secuenciamiento
del 16S rDNA y han sido atribuidos a las especies S. albidofuscus, S. ambofaciens, S. canaries, S. chibaensis, S. coelicolor, S. corchorusii, S. nigrifaciens y S. parvullus. Las distintas sales encontradas sobre las antiguas tumbas egipcias, como el cloruro de sodio, cloruro de potasio y el sulfato de magnesio, han aumentado el crecimiento de los
estreptomicetos aislados hasta el 10% de dichas sales. Los estreptomicetos aislados han adoptado distintos mecanismos de defensa como la pigmentación, el equilibrio osmótico y la producción de aminoácidos. Las sales han tenido un efecto sinérgico en el deterioro de los frescos mediante la interacción con el micelio de los estreptomicetos, incrementando el deterioro mecánico de las superficies lapídeas.

 


Резюме


Восемь из сорока шести образцов стрепромицитов, которые являются самыми мощными биоразрушителями, были изолированы от поврежденных фресок внутри гробниц в Тель Баста и Танисе в Нижнем Египте . Они были идентифицированы при использовании традиционных методов и последовательности 16S рДНК и
были отнесены к видам S. albidofuscus, S. ambofaciens, S. canaries, S. chibaensis, S. coelicolor, S. corchorusii, S. nigrifaciens и S. parvullus . Различные соли, найденные на древнеегипетских могилах, такие как хлорид натрия, хлорид калия и сульфата магния увеличили рост изолированных стрептомицитов до 10% этих солей . Изолированные стрептомициты приняли различные защитные
механизмы такие, как пигментация, осмотическое равновесие и производство аминокислот. Соли оказали синергетический эффект на ухудшение фресок, при взаимодействии мицелия стрептомицитов с солями увеличивался механический износ каменных поверхностей.

 


摘要


代表最强效生物清洗剂的四十六种链霉菌标本中的八种是从位于埃及南部的布巴斯
提斯和塔尼斯的墓穴内部受损壁画上提取出来的。这些提取物通过16SrDNA排序和常
规方法被确认,归属于物种微白褐链霉菌、生二素链霉菌、黄雀链霉菌黄雀变种、千
叶链霉菌、天蓝色链霉菌、黄麻链霉菌、生黑链霉菌和小小链霉菌。
在古埃及墓中所发现的多种盐,比如氯化钠、氯化钾和硫酸镁都增加了10%的提取
链霉菌的生长。提取的链霉菌已采取了不同的防御机制,比如色素、渗透平衡和氨基
酸的产生。这些盐通过与链霉菌菌丝体的相互作用已经对壁画损坏起到了协助作用,
同时还提高了石材表面的机械化变质。


Keywords


tombs; Egypt; Streptomyces; salts; carotenoid

References


URZÌ C., DE LEO F., BRUNO L., ALBERTANO P., 2010, Microbial Diversity in

Paleolithic Caves: A Study Case on the Phototrophic Biofilms of the Cave of Bats

(Zuheros, Spain), Microbial Ecology 60, pp. 116–129

MCCARTHY A.J., WILLIAMS S.T., 1992, Actinomycetes as agents of biodeterioration

in the environment, A review, Gene, 115, pp. 189-192

SUIHKO M., ALAKOMI H., GORBUSHINA A., FORTUNE I., MARQUARDT J.,

SAARELA M., 2007, Characterization of aerobic bacterial and fungal microbiota on

surfaces of historic Scottish monuments, Systm. Appl. Microbiolo. 30, pp. 494-508

PETUSHKOVA J., LYALIKOVA N., POGLAZOVA M., 1989, Microorganisms

found in the Ferapont Monastery fresco, Microbiology, 6, pp. 1021-1030

MIGUELEZ E., HARDISSON C., MANZANAL M., 2000, Streptomyces: A new

model to study cell death, International Microbiology, 3, pp. 153-158

MAY E., 2003, Microbes on building stone-for good or ill?, Culture, 24, pp. 4-8

GOODFELLOW M., WILLIAMS S.T., 1983, Ecology of Actinomycetes, Annual

Review of Microbiology, 37,pp. 189-216

HEYRMAN J., SWINGS J., 2003, Description of novel bacteria species associated

with biodeteriorated mural paintings using molecular techniques, Molecular

Biology and Cultural Heritage, pp. 29-34

PEPE O., PALOMBA S., SANNINO L., BLAIOTTA G., VENTORINO V., MOSTCHETTI

G., VILLANI F., 2011, Characterization of hetrotrophic bacteria and fungi of

deteriorated wall paintings in the archaeological excavation site of Herculaneum

(Italy), J. Environmental Biology, 32, pp. 242-240

PALLA F., FEDERICO C., RUSSO R., ANELLO L., 2002, Identification of Nocardia

restricta in biodegraded sandstone monuments by PCR and nested-PCR

DNA amplification, FEMS Microbiology Ecology 39, pp. 85-89

PALLA F., TARTAMELLA E., 2007, Chromatic alteration on marble surfaces analyzed

by molecular biology tools, Conservation Science in Cultural Heritage, 7,

pp.111-127

URZÌ C., DE LEO F., DONATO P., LA CONO V., 2003, Multiple approach to study

the structure and diversity of microbial communities colonizing artistic surfaces.

Study case: the Roman catacombs of Callixtus and Domitilla, in Molecular Biology

and Cultural Heritage, Balkema Publishers, pp. 187-198.

SAKR A., 2005, Effect of Delta environment on deterioration of historic buildings

and Methodology of conservation and restoration, A case study: Temples area at

Tell Basta, M Sc. Thesis, Faculty of Archaeology, Cairo University, pp. 254-255

WUST R.A., SCHLUCHTER C., 2000, The origin of soluble salts in rocks of the

Thebes Mountains Egypt: The damage potential to Ancient Egyptian wall art, J.

Archaeology Science, 27, pp. 1161-1172

KAMALLY H. A., 2012, Salt damage on the wall reliefs of Dendera Temple, Egypt,

e-Conservation, 23, pp. 58-70

SAIZ-JIMENEZ C., LAIZ L., 2000, Occurrence of halotolerant / halophilic bacterial communities in deteriorated monuments, International Biodeterioration Biodegradation,

, pp. 319-326

ABDULLA H.M., MAY E., BAHGAT M., DEWEDAR A., 2008, Characterization of

actinomycetes isolated from Ancient stone and their potential for deterioration,

Polish J. Microbiology, 57, pp. 213-220

PIÑAR G., RIPKA K., WEBER J., STERFLINGER K., 2009, The microbiota of

sub-surface monument of medieval chapel of St. Virgil (Vienna, Austria), International

Biodeterioration Biodegradation, 63, pp. 851-859

MAGALHAES S.L., BRAGA M., 2000, Biological colonization features on a granite

monument from Braga (New Portugal), 9th International congress on deterioration

and conservation of stone, Venice June 19-24, V. Fassina (ed.), Vol.1, pp. 521-529

GOUDIE A., VILES H., 1997, Salts weathering hazards, John Wiley and sons,

University of Oxford, pp. 157-158

MILANESI C., BALDI F., BORIN S., CIAMPOLINI F., FALERI C., CRESTI M.,

, Biodeterioration of a fresco by biofilm forming bacteria, International Biodeterioration

& Biodegradation, 57, pp. 168–173

ESCORTEGANHA M.R., SANTIAGO A.G., MAGOSSO H.A., RICHTER F.A.,

COSTA T.G., 2013, Conservation state of mural paintings from a historical house

in Florianopolis-SC, Brazile, A Multidisciplinary approach, Int. J. Conservation

Science, 4 (1),pp. 13-24

WARSCHEID T., KRUMBEIN W., 1996, General aspects and selected cases, in:

Microbially Influenced Corrosion of Materials, Heitz et al.,(eds.), Springer-Verlag,

Berlin, pp. 274–295

ZAGARI M., ANTONELLI F., URZI C., 2000, Biological patina on the limestone

of the Loches Romanic Tower (Touraine, France), 9th International congress on

deterioration and conservation of stone, Venice June 19-24, V. Fassina (ed.), Vol.

, pp. 445-452

URAJI M., ARIMA J., UESUGI Y., IWABUCHI M., HATANAKA T., 2007, Effect

of salt on the activity of Streptomyces prolyl aminopeptidase, Biochimica Biophysica

Acta, 1774, pp. 1462–1469

JROUNDI F., FERNANDEZ-VIVAS A., RODRIGUEZ-NAVARRO C., BEDMAR

J., GONZALEZ-MUNOZ M., 2010, Bioconservation of deteriorated monumental

calcarenite stone and identification bacteria with carbonatohenic activity, Microial

Ecology, 60, pp. 39-54

ABDEL- HALIEM M.F., ALI M.F., GHALY M.F., SAKR A.A., 2013, Efficiency of

antibiotics and gamma irradiation in eliminating Streptomyces strains isolated

from paintings of ancient Egyptian tombs, J. Cultural Heritage, 14, pp. 40-50

URZÌ C., WOLLENZIEN U., CRISEO G., KRUMBEINE W.E., 1995, Biodeversity

of the rock inhabiting microbiota with special reference to black fungi and black

yeast, in Microbial Diversity and Ecosystem Function, Allsopp, D., Colwell, R.R.

and Hawksworth, D.L., (eds), London, pp. 289-303

SAKR A.A., ALI M.F., GHALY M.F., ABDEL HALEIM M.E.F., 2013, Discoloration

of ancient Egyptian mural paintings by Streptomyces strains and methods of its

removal, Intenational J. Conservation Science, 3, pp. 249-258

SHIRAKAWA M A., GAYLARDE C. C., GAYLARDE P. M., JOHN V., GAMBALE

W., 2002, Fungal colonization and succession on newly painted buildings and

the effect of biocide, FEMS Microbiology Ecology, 39, pp. 165-173

KÄMPFER P., 2006, The Prokaryotes. A Hand book on the biology of bacteria,Vol.3, 3rd ed., Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt

E (Editors),Springer, The family Streptomycetaceae, Part I, Taxonomy, pp. 538-

SAMBROOK J., RUSSEL D., 2001, Molecular cloning: A laboratory manual, 3rd

ed. Cold Springs Harbour Press

CHÉNBEY D., PHILIPPOT L., HARTMANN A., HÉNALUT C., GERMON J.,

, 16S rDNA analysis for characterization of denitrifying bacterial isolated

from three agricultural soils, FEMS Microbial Ecology, 24, pp. 121-128

ENQUIST L.W, BRADLEY S., 1971, Characterization of deoxyribonucleotide

acid from Streptomyces venezuelae, Dev. India Microbiology, 12, pp. 225-236

ALTSCHUL S., MADDEN T., SCHÄFFER A., ZHANG J., ZHANG Z., MILLER W.,

LIPMAN D., 1997, Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs, Nucleic Acids Research, 17, pp. 389-402

STERFLINGER K., KRUMBEIN W., LELLAU T., RULLKÖTTER J., 1999, Microbially

mediated orange patination of rock surface, Ancient Biomolecules, 3, pp.

-65

BASKAR V., MADHANRAJ P., KANIMOZHI K., PANNEERSELVAM A., 2010,

Characterization of carotenoids from selected strains of Streptomyces sp., Annals

Biological Research, 1, pp. 194-200

CALLEJON R..M., TESFAYE W., TORIJA M.J., MAS A., TRONCOSO A.M., MORALES

M., 2008, HPLC determination of amino acids with AQC derivatization

in vinegar along submerged and surface acetifications and its relation to microbiota,

Eur. Food Res. Technol. 227, pp. 93-102

SCHANCHEZ-MORAL S., LUQUE L., CANAVERAS J., LAIZ L., JURADO V.,

HERMOSSIN B., SAIZ-JIMENEZ C., 2004, Bioinduced barium precipition in St.

Callixtus and Domitilla catacombs, Annals of Microbiology, 54, pp. 1-12

GIACOBINI C., DE CICCO M., TIGLIE I., ACCARDO G., 1988, Actinomycetes

and biodeterioration in the field of fine art, In: Biodeterioration, D.R. Houghton,

R.N. Smith, H.O.W. Eggins (eds.), Elsevier Applied Science, New York, NY, Vol.

, pp. 418-423

ARNOLD A., 1984, Determination of mineral salts from monuments, Studies in

Conservation, 29, pp. 129-138

RODRIGUEZ-NAVARRO C., SEBASTIAN E., DOEHENE E., GINELL S., 1998,

The role of sepiolite-palygorskite in the decay of Ancient Egyptian limestone

sculptures, Clays and Clay Minerals, 46, pp. 414-422

URZI C., REANLINI M., 1998, Color changes of Noto᾿s calcareous sandstone

as related to its colonization by microorganisms, International Biodeterioration &

Biodegradation, 42, pp. 45-54

WALSH D., PAPKE R., DOOLITTLE W., 2005, Archaeal diversity along a soil

salinity gradient prone to disturbance, Environmental Microbiology, 7, pp. 1655–

THUMAR J., SINGH S.P., 2007, Scretion on an alkaline from a salt-tolerant and

alkaliphilic Streptomyces clavuligerus strain MIT-1, Brazilian J. Microbiology, 38,

pp. 766-772

SAIZ-JIMENEZ C., SAMSON R.A., 1981, Microorganisms and environmental

pollution as deteriorating agents of the frescoes of the monastery of Santa Maria

de la Rabida, Huelva, Spain, 6th Triennial Meeting ICOM, paper 81/15/5, pp.14

EL SHAYEIB M.F., 1995, Effects of the environmental factors on the monuments areas in the East of Delta, Ph D Thesis, Zagzig University, pp. 301-303

HERRERO J.I., 1967, Altération des calcaires et des gres utilizés dans la

construction, Paris, pp. 41-42

GEWEELY N.S., 2006, Non toxic fumigation and alternative control techniques

against fungal colonization for preserving archaeological oil paintings, International

J. Botany, 2, pp. 353-362

PAPIDA S., MURPHY W., MAY E., 2000, Enhancement of physical weathering

of building stones by microbial populations, International Biodeterioration & Biodegradation,

, pp. 305-317

KILLHAM K., FIRESTONE M., 1984, Salt stress control of intracellular solutes in

Streptomyces indigenous to saline soil, Applied Environmental Microbiology, 47,

pp. 301-306

ROMANO A., NICKERSON W., 1958, Utilization of amino acids as carbon sources

by Streptomyces fradiae 1, J. Bacteriol, 75, pp. 161-166




DOI: 10.6092/issn.1973-9494/4190

Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Akmal Ali Sakr, Mohammed Farouk Ghaly, Mona Fouad Ali

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.