Carbonatogenesis: microbial contribution to the conservation of monuments and artwork of stone

Swaranjit S. Cameotra, Tikam C. Dakal

Abstract


Over the last few decades there has been increasing global concern over the deterioration of historical monuments and stone works of art. It has posed a big challenge for the archaeologist, geobiologists and bioconservators and consequently encouraged the search for developing novel preventive and remedial methodologies for safeguarding these sculptural monuments and stone works of art. Many conventional methods which rely on use of physical and chemical treatments have been applied but none of them have yielded satisfactory results. Recently, bioconservation and consolidation methods employing carbonatogenic microbes have received much attention. These microorganisms can precipitate calcium carbonate and, thereby, confer protection to historic monuments.

Riassunto

Negli ultimi decenni c’è stata una crescente preoccupazione a livello mondiale per quel che concerne il deterioramento dei monumenti storici e dei manufatti lapidei. Questa rappresenta una grande sfida per gli archeologi, geo-biologi e bioconservatori che ha promosso la ricerca e lo sviluppo di nuove metodologie preventive e di recupero finalizzate alla salvaguardia di questi monumenti e opere d’arte scultoree in pietra. Molti metodi convenzionali che si basano sull’uso di trattamenti fisici e chimici sono stati applicati, ma nessuno di essi ha dato risultati soddisfacenti. Recentemente, hanno destato molta attenzione i metodi di bioconservazione e consolidamento che impiegano la carbonato-genesi da microrganismi. Questi sono in grado di indurre la precipitazione di carbonato di calcio e, quindi, conferire protezione ai monumenti storici.

Résumé

Dans ces dernières décennies, il y a eu une croissante préoccupation au niveau mondial concernant la détérioration des monuments historiques et des ouvrages de pierre. Elle représente un grand défi pour les archéologues, les géo-biologistes et les bio-conservateurs et a promu la recherche et le développement de nouvelles méthodologies préventives et de récupération finalisées à la sauvegarde de ces monuments et œuvres d’art sculpturales en pierre. De nombreuses méthodes conventionnelles qui se basent sur l’usage de traitements physiques et chimiques ont été appliquées, mais aucune d’elles n’a donné de résultats satisfaisants. Récemment, les méthodes de bioconservation et consolidation qui emploient la carbonatogenèse de micro-organismes ont suscité beaucoup d’attention. Elles sont en mesure d’induire la précipitation de carbonate de calcium et, donc, de conférer une protection aux monuments historiques.

Zusammenfassung

Der Verfall historischer Denkmäler und von Steinarbeiten sorgte in den vergangenen zehn Jahren weltweit für wachsende Besorgnis. Für Archäologen, Geobiologen und Bio-Konservatoren stellt diese Situation eine große Herausforderung dar und fungiert als Ausgangspunkt für die Erforschung und Entwicklung neuer vorbeugender und rekuperativer Methodiken zum Schutz dieser Denkmäler und Steinskulpturen. Viele bisher angewendete und auf physischen sowie chemischen Behandlungen beruhende Verfahren brachten keine zufriedenstellenden Ergebnisse. In der letzten Zeit stießen in der Biokonservation und Befestigung angewandte Methoden auf großes Interesse, die auf der Karbonatgenese durch Mikroorganismen beruhen. Diese Verfahren sind in der Lage, die Ausfällung von Kalziumkarbonat herbeizuführen und somit Denkmälern einen Schutz zu verleihen.

Resumen

En las últimas décadas hubo una creciente preocupación a nivel mundial por lo que se refiere al deterioro de los monumentos históricos y de las obras lapídeas. Se trata de un gran desafío para los arqueólogos, geo-biólogos y bioconservadores que ha promovido la investigación y el desarrollo de nuevas metodologías preventivas y de recuperación encaminadas a proteger estos monumentos y las obras de arte escultóricas en piedra. Se han aplicado muchos métodos convencionales basados en el uso de tratamientos físicos y químicos, pero ninguno de ellos ha logrado resultados satisfactorios. De reciente, han suscitado mucha atención los métodos de bioconservación y consolidación basados en la génesis del carbonato desde microrganismos. Siendo capaces de inducir la precipitación del carbonato cálcico, estos microorganismos pueden proteger los monumentos históricos.

Резюме

В последние десятилетия во всем мире заметно возрастает тревога по поводу упадка исторических памятников и каменных артефактов. Это большой вызов археологам, геобиологам и биоконсерваторам, который дал начало поиску и развитию новых предохранительных и восстановительных методологий, направленных на сбережение этих памятников и каменных скульптур. Многие традициональные методы, основанные на использовании физических и химических процедур, были применены, но никакой из них не дал удовлетворяющих результатов. В последнее время вызывают большой интерес методы биоконсервации и консолидации, которые используют генезиз карбонатов из микроорганизмов. Они способны вызывать осаждение карбоната кальция и, следовательно, обеспечивать защиту исторических памятников.

Ամփոփում

Վերջին տասնամյակների ընթացքում աճող մտահոգություն է եղել աշխարհում պատմական հուշարձանների եւ քարարաշեն արտեֆակտների վատթարացման վերաբերյալ Սա մեծ մարտահրավեր է հնագետների, կենսաբանների ու բիոկոնսերվատորների համար, որը նպաստել է հետազոտման եւ զարգացման նոր մեթոդները օգտագործել կանխարգելիչ եւ վերականգնման նպատակով այդ հուշարձանների եւ քարի վրա քանդակված արվեստի գործերի պահպանությանը: Շատ մեթոդներ, որոնք հիմնված են ֆիզիկական եւ քիմիական տեխնիկայի վրա չեն տվել բավարար արդյունք: Վերջերս, մեծ ուշադրություն է գրավել բիոկոնսերվացիան ու ամրապնդումը օգտագործելով միկրոօրգանիզմների կողմից կարբոնատ-ծնող մեթոդներ: Դրանք կարող են առաջացնել կալցիումի կարբոնատի տեղումներ  եւ, հետեւաբար, ուժեղացնել պատմական հուշարձանների պաշտպանությունը:


Keywords


carbonatogenesis; historic monuments; stone artwork; bioconservation

Full Text:

PDF (English)

References


GAURI K.L., BANDYOPADHYAY J.K., 1999, Carbonate Stone: Chemical Behaviour, Durability, and Conservation, Wiley-Interscience, New York.

CHAND T., CAMEOTRA S.S., 2011, Geomicrobiology of heritage monuments and artworks: Mechanisms of biodeterioration, bioconservation strategies and applied molecular approaches, in Bioremediation: Biotechnology, Engineering and Environmental Management, Nova Science Publishers, New York.

WEBSTER A.M., MAY E., 2006, Bioremediation of weathered-building stone surfaces, Trends in Biot. 24, pp. 255-260

SIANO S., SALIMBENI R., 2009, Advances in laser cleaning of artwork and objects of historical interest: The optimized pulse duration approach, Acc. Chem. Res., 43, pp. 739-750.

RANALLI G., ALFANO G., BELLI C., LUSTRATO G., COLOMBINI M.P., BONADUCE I., ZANARDINI E., ABBRUSCATO P., CAPPITELLI F., SORLINI C., 2005, Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes, J. Appl. Microbiol. 98, pp. 73–83.

DA SILVA NUNES-HALLDORSON V., DURAN N., 2003, Bioluminescent bacteria: lux genes as environmental biosensors, Braz. J. Microbiol., 34, pp. 91–96.

SLATON D., NORMANDIN K.C., 2005, Masonry cleaning technologies, J. Architect. Conserv., 11, pp. 7–31.

FAVARO M., TOMASIN P., OSSOLA F., VIGATO P.A., 2008, A novel approach to consolidation of historical limestone: the calcium alkoxides, Appl. Organometal. Chem., 22, pp. 698–704.

BARABESI C., GALIZZI A., MASTROMEI G., ROSSI M., TAMBURINI E., PERITO B., 2007, Bacillus subtilis gene cluster involved in calcium carbonate biomineralization, Journal of Bacteriology, 189, pp. 228–235.

SALVADORI O., 2003, The control of biodeterioration, Coalition, 6, pp. 16–20.

FERNANDES P., 2006, Applied microbiology and biotechnology in the conservation of stone cultural heritage materials, Appl. Microbiol. Biotechnol. 73, pp. 291–296.

CAPPITELLI F., LUCIA TONIOLO L., SANSONETTI A., GULOTTA D., RANALLI G., ZANARDINI E., SORLINI C., 2007, Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments, Appl. Environ. Microb., 73, pp. 5671–5675.

GONZÁLEZ-MUÑOZ M.T., 2008, Bacterial biomineralization applied to the protection-consolidation of ornamental stone: current development and perspectives, Coalition, 15, pp. 12–18.

TIANO P., BIAGIOTTI L., MASTROMEI G., 1999, Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation, J. Microbiol. Meth., 36, pp. 139–145.

SCHEERER S., ORTEGA-MORALES O., GAYLARDE C., 2009, Microbial Deterioration of Stone Monuments—An Updated Overview, Adv. Appl. Microbiol., 66, pp. 97-139.

HANSEN E., DOEHNE E., FIDLER F., LARSON J., MARTIN B., MATTEINI M., RODRIGUEZ-NAVARRO C., PARDO E.S., PRICE C., DE TAGLE A., TEUTONICO J.M., WEISS N., 2003, A review of selected inorganic consolidants and protective treatments for porous calcareous materials, Rev. Conser., 4, pp. 13–25.

DE MUYNCK W., COX K., DE BELIE N., VERSTRAETE W., 2008a, Bacterial carbonate precipitation as an alternative surface treatment for concrete, Const. Build. Mater., 22, pp. 875–885.

CASTANIER S., LE MÉTAYER-LEVREL G., ORIAL G., LOUBÌERE J.F., PERTHUISOT J.P., 2000., Bacterial carbonatogenesis and applications to preservation and restoration of historic property, in Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage, pp. 201-216, Plenum, New York.

PALLA F., FEDERICO C., RUSSO R., ANELLO L., 2002, Identification of Nocardia restricta in biodegraded sandstone monuments by PCR and nested-PCR amplification. FEMS Microbiology ecology. vol. 39/1, pp. 85-8.

HAMMES F., BOON N., DE VILLIERS J., VERSTRAETE W., SICILIANO S.D., 2003, Strain-specific ureolytic microbial calcium carbonate precipitation, Appl. Environ. Microbiol., 69, pp. 4901 4909.

BASKAR S., BASKAR R., MAUCLAIRE L., MCKENZIE J.A., 2006, Microbially induced calcite precipitation in culture experiments: possible origin for Sahastradhara Caves, Dehradun, India, Curr. Sci. India, 90, pp. 58–64.

NAKATSU C.H., 2007, Soil microbial community analysis using denaturing gradient gel electrophoresis, Soil Sci. Soc. Am. J., 71, pp. 562–571.

PALLA F., TARTAMELLA E., 2007, Chromatic alteration on marable surfaces analyzed by molecular biology tools. Conservation Science in Cultural Heritage, 7, pp. 111-127.

DE MUYNCK W., DEBROUWER D., DE BELIE N., 2008b, Bacterial carbonate precipitation improves the durability of cementitious materials, Cement Concrete Res., 38, pp. 1005–1014.

JIMENEZ-LOPEZ C., 2007, Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone, Chemosphere, 68, pp. 1929–1936

PALLA F., BILLECI N., MANCUSO F.P., PELLEGRINO L., LORUSSO L.C., 2010, Microscopy and Molecular biology techniques for the study biocenosis diversity in semi-confined environments. Conservation Science in Cultural Heritage, 10, pp. 185-194

PALLA F., ANELLO L., PECORELLA S., RUSSO R., DAMIAN F., 2003, Characterization of bacterial communities on stone monuments by molecular biology tools, in Molecular biology and cultural heritage, pp. 115-118, Swets & Zeitlinger BV, Lisse.

PIÑAR G., GURTNER C., LUBITZ W., RÖLLEKE S., 2001, Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning, Meth. Enzymol., 336, pp. 356-366.

LAIZ L., PIÑAR G., LUBITZ W., SAIZ-JIMENEZ C., 2003, The colonisation of building materials by microorganisms as revealed by culturing and molecular methods, in Molecular biology and cultural heritage, pp. 23-28, Swets & Zeitlinger BV, Lisse.

JROUNDI F., FERNÁNDEZ-VIVAS A., RODRIGUEZ-NAVARRO C., BEDMAR E.J., GONZÁLEZ-MUÑOZ M.T., 2010, Bioconservation of deteriorated monumental

calcarenite stone and identification of bacteria with carbonatogenic activity, Microb. Ecol. 60, pp. 39–54.

HAMMES F., VERSTRAETE, W., 2002, Key roles of pH and calcium metabolism in microbial carbonate precipitation, Environ. Sci. Biotechnol., 1, pp. 3–7.

BOQUET E., BORONAT A., RAMOS-CORMENZANA A., 1973, Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon, Nature, 248, pp. 21–28.

CACCHIO P., CONTENTO R., ERCOLE C., CAPPUCCIO G., MARTINEZ M.P., LEPIDI A., 2004, Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L’Aquila-Italy), Geomicrobiol. J., 21, pp. 497–509.

CACCHIO P., ERCOLE C., CAPPUCCIO G., LEPIDI A., 2003, Calcium carbonate precipitation by bacterial strains isolated from limestone cave and from a loamy soil, Geomicrobiol. J., 20, pp. 85–98.

ZAMARREÑO D.V., MAY E., ROBERT I., 2009, Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria, Geomicrobiol. J., 26, pp. 1–12.

NOVITSKY, J.A., 1981, Calcium carbonate precipitation by marine bacteria, Geomicrobio. J., 2, 375–388.

LE MÉTAYER-LEVREL G., CASTANIER S., ORIAL G., LOUBIÈRE J.F., PERTHUISOT J.P., 1999, Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony, Sedi. Geol., 126, pp. 25–34.

CASTANIER S., LE MÉTAYER-LEVREL G., PERTHUISOT J.P., 1999, Ca-carbonates precipitation and limestone génesis—the microbiogeologist point of view, Sediment. Geol. 126, pp. 9-23.

RAMACHANDRAN S.K., RAMAKRISHNAN V., BANG S.S., 2001, Remediation of concrete using microorganisms, ACI Mater. J. 98, pp. 3–9.

SARDA D., CHOONIA H.S., SARODE D.D., LELE S.S., 2009, Biocalcification by Bacillus pasteurii urease: a novel application, J. Ind. Microbiol. Biotechnol., 36, pp. 1111–1115.

- 53] CAPPITELLI F., ZANARDINI E., RANALLI R., MELLO E., DAFFONCHIO D., SORLINI C., 2006, Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria, Appl. Environ. Microbiol., 72, pp. 3733–3737.

KRUMBIEN W.E., 2003, Patina and Cultural Heritage – a Geomicrobiologist’s Perspective. Cultural Heritage Research: a Pan European Challenge, in 5th EC

Conference, Cracow.

SAARELA M., ALAKOMI H.L., SUIHKO M.L., MAUNUKSELA L., RAASKA L., MATTILA-SANDHOLM T., 2004, Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi, Int. Biod. Biodegr., 54, pp. 27-37.

SANDERS M., VAN HEES R.P.J., 2005, Monitoring of the moisture and salt load in restoration plasters in St. Barbara’s Church in Culemborg, Proceedings Rilem Workshop “Historic Mortars”, Delft, The Netherlands.

GROOT C., VAN HEES R., WIJFFELS T., 2009, Selection of plasters and renders for salt laden masonry substrates, Construction and Building Materials, 23, pp. 1743-1750.

DOEHNE E., SCHIRO M., ROBY T., CHIARI G., LAMBOUSY G., KNIGHT H., 2008, Evaluation of poultice desalination process at Madame John’s Legacy, New Orleans, in J. Lukaszewicz, P. Niemcewicz (eds.), Proceedings of 11th Inernational Congress on Deterioration and Conservation of Stone, Nicolaus Copernicus University Press, Torun, pp. 857-864.

BOURGÈS A., VERGÈS-BELMIN V., 2008, Comparison and optimization of five desalination systems on inner walls of Saint Philibert Church in Dijon, France, in Salt Weathering on Buildings and Stone Sculpture, SWBSS, Copenhagen, Denmark.

CUZMAN O.A., VENTURA S., SILI C., MASCALCHI C., TURCHETTI T., D’ACQUI L.P., TIANO P., 2010, Biodiversity of phototrophic biofilms dwelling on monumental fountains, Microb. Ecol., 60, pp. 81-95

FRATINI F., RESCIC S., TIANO P., 2006, A new portable system for determining the state of conservation of monumental stones, Materials and Structures, 39, pp. 139–147.

RUIZ-AGUDO E., MEES F., JACOBS P., RODRIGUEZ-NAVARRO C., 2007, The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates, Environ. Geol., 52, pp. 269–281.

LEE Y.N., 2003, Calcite Production by Bacillus amyloliquefaciens CMB01, J. Microbiol., 41, pp. 345-348.

ORIAL G., CASTANIER S., LE METAYER G., LOUBIÈRE J.F., 1993, The biomineralization: a new process to protect calcareous stone applied to historic monuments, in H. Ktoishi, T. Arai, K. Yamano (eds.), Proceedings of the 2nd International Conference of Biodeterioration of Cultural Property, International Communications Specialists, Tokyo, Japan, pp. 98–116.

DICK J., DE WINDT W., DE GRAEF B., SAVEYN H., VAN DER MEEREN P., DE BELIE N., VERSTRAETE W., 2006, Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 17, pp. 357–367.

GAURI L.K., PARKS L., JAYNES J., ATLAS R., 1992, Removal of sulphated crust from marble using sulphate-reducing bacteria, in G.M. Robin (ed.), Stone cleaning and the nature, soiling and decay mechanisms of stone, Proceedings of the International Conference.: Donhead Publishing Ltd., Edinburgh, United Kingdom, pp. 160–165.

RIVADENEYRA M.A., PÁRRAGA J., DELGADO R., RAMOS-CORMERZANA A., DELGADO G., 2004, Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with differerent salinities, FEMS Microbiol. Ecol., 48, pp. 39–46.

MASAPHY S., ZABARI L., PASTRANA J., DULTZ S., 2009, Role of fungal mycelium in the formation of carbonate concretions in growing media—An investigation by SEM and synchrotron-based X-ray tomographic microscopy, Geomicrobio. J., 26, pp. 442–450.

RODRIGUEZ-NAVARRO C., RODRIGUEZ-GALLEGO M., CHEKROUN K.B., GONZALEZ-MUÑOZ M.T., 2003, Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization, Appl. Environ. Microbiol., 69, pp. 2182–2193.

ANDERSON S., APPANNA V.D., HUANG J., VISWANATHA T., 1992, A novel role for calcite in calcium homeostasis, FEBS Lett., 308, pp. 94–96.

RIVADENEYRA M.A., DELGADO R., PÁRRAGA J., RAMOS-CORMENZA A., 2006, Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: influence of salt concentration, Folia Microbiol., 51, pp. 445–453.

SPROCATI A.R., ALISI C., TASSO F., 2008, A microbial survey of the Etruscan Mercareccia Tomb (Italy): Contribution of microorganisms to deterioration and restoration, in 9th International Conference on NDT of Art, Jerusalem Israel.

DE GRAEF B., DE WINDT W., DICK J., VERSTRAETE W., DE BELIE N., 2005, Cleaning of concrete fouled by lichens with the aid of Thiobacilli, Materials and Structures, 38, pp. 875-882.

SAIZ-JIMENEZ C., 1997, Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings, Int. Biod. Biodegr., 40, pp. 225–232.

RANALLI G., CHIAVARINI M., GUIDETTI V., MARSALA F., MATTEINI M., ZANARDINI E., SORLINI C., 1997, The use of microorganisms for the removal of sulphates on artistic stoneworks, Int. Biod. Biodegr., 40, pp. 255–261.

WRIGHT D.T., 1999, The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia, Sedimentary Geol., 126, pp. 147–157.

WARTHMANN R., VAN LITH Y., VASCONCELOS C., MCKENZIE J.A., KARPOFF M., 2000, Bacterially induced dolomite precipitation in anoxic culture experiments, Geol., 28, pp. 1091–1094.

PRICE C.A., 1984, The consolidation of limestone using a lime poultice and limewater, in Proceedings of Adhesives and Consolidants IIC Meeting. Paris, IC, London. pp. 160-162.

BANG S.S., GALINAT J.K., RAMAKRISHNAN V., 2001, Calcite precipitation induced by polyurethane immobilized Bacillus pasteurii, Enz. Microb. Tech., 28, pp. 404–409.

TITTELBOOM K.V., DE BELIE N., DE MUYNCK W., VERSTRAETE W., 2010, Use of bacteria to repair cracks in concrete, Cement Concrete Res., 40, pp. 157- 166.

ANTONIOLI P., ZAPPAROLI G., ABBRUSCATO P., SORLINI C., RANALLI G., RIGHETTI P.G., 2005, Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery, Proteomics, 5, pp. 2453–2459.

PIÑAR G., JIMENEZ-LOPEZ C., STERFLINGER K., ETTENAUER J., JROUNDI F., FERNANDEZ-VIVAS A., GONZALEZ-MOÑOZ M.T., 2010, Bacterial community dynamics during the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of ornamental limestone. Microb. Ecol., 60, pp. 15-28.

MCBRIDE M.J., HARZELL P., ZUSMAN D.R., 1993, Motility and tactic behaviour of Myxococcus Xanthus, in Myxobacteria II, pp. 285–305, American Society for Microbiology (ASM), Washington.

BURFORD E.P., FOMINA M., GADD G.M., 2003, Fungal involvement in bioweathering and biotransformation of rocks and minerals. Miner. Mag. 67, pp. 1127–1155.

BURFORD E.P., HILLIER S., GADD G.M., 2006, Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms, Geomicrobiol. J., 23, pp. 599–611.

WARSCHEID T., BRAAMS J., 2000, Biodeterioration of stone: a review, Int. Biod. Biodegr., 46, pp. 343–368.

MCNAMARA C.J., MITCHELL R., 2005, Microbial deterioration of historic stone, Fronti. Ecol. Envir, 3, pp. 445–451.

LEE B.D., APEL W.A., WALTON M.R., 2005, Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807, Bioresour. Technol., 97, pp. 2427-2434.

GLADIS F., EGGERT A., KARSTEN U., SCHUMANNET R., 2010, Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles, Biofouling, 26, pp. 89–101.

ALAKOMI H.L., PAANANEN A., SUIHKO M.L., HELANDER I.M., SAARELA M., 2006, Weakening effect of the cell permeabilizers on gram-negative bacteria causing biodeterioration, Applied and Environment Microbiology, 72, pp. 4695-4703.

BOLÍVAR F.C., SÁNCHEZ-CASTILLO P.M., 1997, Biomineralization processes in the fountains of the Alambra, Ganada, Spain, Int. Biod. Biodegr., 40, pp. 205–215

DORNIEDEN T., GORBUSHINA A., KRUMBEIN W.E., 2000, Patina: physical and chemical interactions of sub-aerial biofilms with objects of art, in O. Ciferri, P. Tiano, G. Mastromei (eds.), in Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage, pp. 105-120, Phenum, New York.




DOI: 10.6092/issn.1973-9494/3383

Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Swaranjit S. Cameotra, Tikam C. Dakal

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.